Next up in our “This didn’t quite make it into the 2021 Threat Report, but is still really cool” series: New and emerging backdoor variants from 2021!
Contents:
- What is a website backdoor?
- How do backdoors work?
- What are the new types of backdoor malware?
- Why you should protect your website against backdoors
- Steps to find and remove website backdoors
- How to prevent website backdoors
What is a website backdoor?
A backdoor provides a shortcut for authorized or unauthorized users to gain access to an unauthorized location of a website, software, or system. There are many different ways to categorize backdoors, but they are usually not in plain sight and are intentionally difficult to detect.
Backdoors are a crucial component of a website infection. They provide attackers with ongoing access to the compromised environment and give them a “foot in the door” to execute their payload. Many different types of backdoors exist with varying functionality.
When our malware research team is provided with a new backdoor they need to write what’s called a “signature” to ensure that we detect and remove it in future security scans. Signatures need names, and over the years we’ve developed something of a taxonomy naming system for all of the different malware that we come across.
In this article we’re going to explore all the different categories of signatures for newly-discovered backdoors throughout the year 2021.
Legitimate vs. illegitimate backdoors
Developer’s backdoor
Sometimes called a Maintenance Hook, Administrative Backdoor, or a Proprietary Backdoor, these are backdoors created on purpose by developers during the development process of the software or hardware. The backdoor allows them a quick way to test features, remove bugs and write code without having to create an actual account and deal with logins.
Typically, these are removed once the product passes QA and moves into production, but some developers leave the backdoor in. They can use the same shortcut to test new features down the road, troubleshoot, or help users who are locked out of their devices restore access. Leaving any backdoor in a software application creates a major risk that skillful hackers could detect and take advantage of it. Backdoors should never be left in production code for any reason, no matter how “safe” it may be.
Hacker’s backdoor
The process of a hacker placing a backdoor on a system, application, or software is called a backdoor attack. The backdoor gives hackers access to elevated user privileges that allow them to infect systems and networks.
Backdoors can be present in endpoint devices like computing hardware or firmware. For example, backdoors have been found in CPUs (Central Processing Units) and servers, in addition to operating systems, applications, websites, and softwares. When a website is hacked, a hacker places the backdoor to gain reentry to the site. This allows them to return without detection.
Illegitimate backdoors are classified as trojans. Like the trojan horse from the Greek story, The Odyssey, the program appears harmless but has devastating potential. It is often disguised as a part of a theme or plugin. It can be hidden or encrypted in a file with a discreet name like .users.php. Backdoors are designed to evade intrusion detection systems (IDS) and can silently exist for months or even years without being detected and even before they are actually used.
How do backdoors work?
Backdoors may use HTTP requests to websites, which typically fall into one of the following categories:
- POST – sending data to a website
- GET – requesting data from a website
- COOKIE – data (such as session data) saved from a website
- REQUEST – a conjunction of all/any of the three
We see all sorts of different backdoors while cleaning up compromised websites. Sometimes they use one of these types of requests, or a combination of multiple different types.
What were the new types of website backdoors in 2021?
We’ve broken all newly generated signatures from 2021 down for further analysis into the following categories:

1. Uploaders
By far the most common type of backdoor found in 2021 was an uploader: That is, a PHP script that allows the attackers to upload any file that they want. These malicious files allow anyone with the correct URL path, parameters and (occasionally) access credentials to upload whichever files they want to the web server. Typically, bad actors use these backdoors to upload a webshell, spam directory, dropper, or other type of file giving them full control over the environment.
To avoid detection, attackers are always tweaking their malware by using new methods of obfuscation or concealing backdoors within legitimate-looking images, core files, plugins, or even themes — this can make malicious file uploaders difficult to detect during a casual site review.
Once an attacker has identified a vulnerable environment that they can get a foothold in, planting the uploader is often the next step. After that they have enough access to upload more complicated access points such as a webshell.
Of course there are legitimate uploader scripts, as many websites require functionality to allow users to upload photos or other content to the website. To mitigate risk, secure uploader scripts contain strict rules on how they are able to behave:
- Only certain file types/extensions are allowed (usually image, or document files)
- May require authorisation cookies to be set
- May place files in a restricted directory with PHP execution disabled
- May disable direct access and instead need to be called by the existing CMS structure
Malicious uploaders, on the other hand, have no such restrictions as they are designed to upload malicious files and PHP scripts.

2. WebShells
Webshells are a classic type of malware that have been used by attackers for many years. They are administrative dashboards that give the attacker full access to the files and often provide a large amount of information about the hosting environment including operating system, PHP settings, web server configurations, file management, and SQL connections.
The classic FilesMan shell continues to be very popular with attackers. In 2021 we generated 20 new signatures related to new filesman variants alone, not including hack tools which grab filesman shells from remote servers.
Interestingly, a lot of malicious web shells provide far superior functionality than a lot of file managers provided by web hosting providers.

3. Misc RCE’s
Sometimes remote code execution backdoors are a little more complicated, or just rely on more basic/generic $_REQUEST calls. This is a PHP global array that contains the content of GET, POST and COOKIE inputs. The content of these variables could be anything and the attacker can fill them — e.g. with the payload — which is then processed. Sometimes the entire payload code is stored there and only very simple code snippets are injected into legitimate files. Such a snippet only loads and executes the content of these variables.
Other times, RCE backdoors make use of multiple different functions and request types.

4. Generic backdoors
Not falling into any particular category are our collection of “generic” backdoors. They tend to use a mixture of different functions and methods to maintain backdoor access to the environment. Some are heavily obfuscated and others are mostly in plain text, but what unites them is that they don’t rely on any one technique to backdoor the environment in which they reside.

5. FILE_GET_CONTENTS
The PHP function file_get_contents fetches a local file or remote file. As far as backdoors are concerned, attackers misuse this function to grab malicious files located on other websites or servers and add it to the victim’s website. This allows them to host the actual malicious content elsewhere, while maintaining all of the same functionality on the victim environment.
Here we have a very simple backdoor using file_get_contents to grab a backdoor from a malicious server. The actual address is obfuscated through use of a URL shortening service:
![]()
The footprint of this malware is very small as the payload resides elsewhere, but the functionality is potentially huge.
6. Remote code execution backdoors
Not to be confused with remote code execution vulnerabilities, these backdoors are crafted to take whatever command is issued to it by the attacker and execute it in the victim’s environment. These PHP backdoors are often more complex than uploaders and allow the attackers more leeway in terms of how they can interact with the victim website.
If a request is sent that matches the parameters of the backdoor it will execute whichever command the attacker instructs so long as it doesn’t get blocked by any security software or firewall running within the environment.

Here’s another example of a quite well hidden RCE backdoor in a Magento environment:

Attackers make heavy use of the eval function which executes the command in the victim environment.
7. FILE_PUT_CONTENTS
These backdoors utilise the PHP function file_put_contents which will write the instructed content to a file on the victim environment.
Here is an example of such a backdoor lodged in a WordPress configuration file wp-config.php:

This backdoor writes the specified malicious content into the file structure of the victim website given the correct parameters in the attacker’s request, allowing them to infect other files on the server with the content of their choice.
8. cURL
The curl() function facilitates the transmission of data. It can be used maliciously to download remote code which can be executed or directly displayed. This way, malware authors are able to create a small backdoor that only has this curl functionality implemented while the payload itself can be downloaded from a remote source.
It has many uses, and as such can be misused in many ways by attackers. We have seen it used frequently in credit card skimmers to transmit sensitive details to exfiltration destinations. It can also be used in RCE backdoors:

Since the attackers have crafted a backdoor to (mis)use curl, and they control the parameters under which it will function, in this way they are able to send or receive malicious traffic to and from the website, depending on how the backdoor is designed.
9. Authentication bypass
These types of backdoors are most often seen in WordPress environments. They are small PHP scripts which allow the attacker to automatically log in to the administrator panel without needing to provide any password.
As long as they include the database configuration file in the script then they are able to set the necessary cookies for authorization, as seen in this example here:

The existence of such backdoors presents a case that additional authentication requirements should be employed within website environments. Protecting your admin panel with our firewall’s protected page feature is a great way to do this.
If you’re not a user of our firewall there are a lot of other ways that your admin panel can be protected.
10. Basic RCE via POST
Backdoors that take input through POST requests are quite common and many of the backdoor types that we’ve seen contain such functionality. Some of them, however, are quite small and rely exclusively on POST requests.
The example below shows one such backdoor, coupled with basic password protection to ensure that the backdoor is not used by anybody that does not have access to the password.

11. Fake Plugins
Another tactic that we’ve seen attackers use is the use of fake plugins. This is frequently used as a payload to deliver spam and malware, since WordPress will load the components present in the ./wp-content/plugins directory.
We’ve also seen attackers use these plugins as backdoors to maintain access to compromised environments.

Since admin panel compromises are a very common attack vector, the usage of fake/malicious backdoor plugins is quite popular with attackers.
12. System Shell Backdoors
Attackers have also written malware that interacts with the hosting environment itself and will attempt to run shell commands via PHP scripts in the environment. This is not always possible, depending on the security settings of the environment, but here’s an example of one such backdoor:

If system() is disabled in the environment then these will not work, so the functionality of such backdoors will be limited by the security settings in the host.
13. COOKIE Based Backdoors
Some malware creators use COOKIES as a storage for various data. These can be decryption keys used to decode an otherwise inaccessible payload, or even the entire malicious payload itself.

14. CREATE_FUNCTION
The create_function() is often used by malware instead of (or in conjunction with) the eval() function to hide the execution of the malicious code. The payload is encapsulated inside the crafted custom function, often with an obfuscated name to make the functionality less clear.
This function is then called somewhere else within the code, and thus the payload is evaluated. Backdoors have been found to abuse this to place their payload back on the infected website after it was removed.

15. RCE via GET
Backdoors have also been seen using GET requests for input, rather than POST requests. In the example below we can see that the backdoor will execute the malicious payload if a GET request contains a certain string.

This allows the attackers to restrict the usage of the backdoor to only those who know the exact parameters to specify in the malicious GET request to the website. If the correct parameters are given then the backdoor will execute its intended function.
16. Database Management Backdoors
Most often attackers will misuse tools such as Adminer to insert malicious content into the victim website’s database, but occasionally we have seen them craft their own database management tools. This allows them to insert admin users into the website as well as inject malicious JavaScript into the website content to redirect users to spam or scam websites or steal credit card information from eCommerce environments.

Why you should protect your website against backdoors
Backdoors play a crucial role for the attackers in a huge number of website compromises. Once the attackers are able to gain a foothold into an environment their goal is to escalate the level of access they have as much as possible. Certain vulnerabilities will provide them access only to certain directories. For example, a subdirectory of the wp-content/uploads area of the file structure.
Often the first thing they will do is place a malicious uploader or webshell into the environment, giving them full control over the rest of the website files. Once that is established they are able to deliver a payload of their choosing.
If default configurations are in place in a standard WordPress/cPanel/WHM configuration a single compromised admin user on a single website can cause the entire environment to be infected. Attackers can move laterally throughout the environment by the use of symlinks even if the file permissions/ownership are configured correctly.
Malicious actors are writing new code daily to try to evade existing security detections. As security analysts and researchers it’s our job to stay on top of the most recent threats and ensure that our tools and monitoring detect it all.
Throughout the year 2021 we added hundreds of new signatures for newly discovered backdoors. I expect we’ll also be adding hundreds more this year.
Steps to find and remove backdoors
It’s critical to remove backdoors. Cleaning a site and changing the passwords is pointless if the backdoor is still there. The backdoor allows the hacker to come back in and reinfect the site with other kinds of malware without any obstacle. The problem is that backdoors can be incredibly hard to find manually.
Here are some steps you can take to get started.
- Log in to your server: using SSH or SFTP . This allows you to find modified files and remove them in bulk.
- Compare Your Files: using the SSH or SFTP command, check every file against the pre-infection files stored on your backup. Check the numerical signature of the checksum to make sure that it matches. This will identify the files that have been modified.
- Check Core File Integrity: Core files are usually never modified. For instructions on searching for modified files, read Sucuri’s Guide on What to do if Your Website is Hacked.
- Remove inactive plugins, themes and extensions – these could be places where the backdoor is hiding. Also remove any themes or plugins that you do not recognize
- Start from scratch – replace all known plugins, core files and extensions that you can with known solid or freshly downloaded versions and manually inspect every custom coded file, knowing that the backdoor could be hidden on any line.
- Check recently modified files. If you have a rough estimate of when the compromise occurred you can use the “mtime” command to find other files modified around the same date.
- Sucuri’s server side scanner is very useful at finding backdoors placed into your website environment. It logs changes to website files and can help you narrow down affected items.
- Still haven’t found it manually? Try a tool. The Github community offers free backdoor finder tools and webshell backdoor finder tools like webshell detector.
How to prevent backdoor attacks
With the difficulty in finding backdoors, there is no saying more apt than “an ounce of prevention is worth more than a pound of cure.” Here’s what you can do to make sure a backdoor never happens in the first place.
- Limit what is installed. If unauthorized apps, widgets and software can’t be downloaded, there is less chance of malware being accidentally downloaded with it.
- Use a custom SSH port to reduce brute force attempts
- Blocklist known bad code when checking your files. This list contains known php backdoors that can be used for cross-comparison if you come across an anomaly.
- Keep a back-up and make sure you keep a clean back-up that is backdoor-free off-site. This will allow you to quickly compare and identify any unusual files.
- Stay up to date on patches with all themes, extensions and plugins.
- Reset all passwords and use strong passwords, and consider a password manager.
- Add additional authentication like captcha and multi-factor authentication to your login page
If you’d like us to help you monitor and secure your website from backdoors and other threats you can sign up for our platform-agnostic website security services.








![Malware comes in many different varieties. Analyst Krasimir Konov is on this month’s Sucuri Sit-Down to help keep them all straight. From malicious iframes to SEO spam, join host Justin Channell as he racks Krasimir’s brain on all the different types of malware. Also, Krasimir discusses his recent blog post about a malicious cURL downloader, and Justin breaks down the latest website security news, including patched plugins you should update. Podcast Transcript Justin Channell: Hello, and welcome to the Sucuri Sit Down. I'm your host, Justin Channell, and this is a monthly podcast about website security, where we get in-depth with the malware removal experts here at Sucuri. Later in the show, I'll have our analyst Krasimir Konov to chat about some different types of malware, but first, let's take a look at other topics we've published on our blog and Sucuri labs notes this month. First up, we have some new information about credit card skimming with hackers using a hybrid method to steal payment information from eCommerce websites. Our analyst Dennis Sinegubko wrote about this for the Sucuri blog back at the beginning of June. Now, most credit card stealing malware is a client side JavaScript that grabs data and sends it to a third party server. But, that approach has a drawback for bad actors because it's still possible to track the requests and catch them as being suspicious. Now, to get around that, bad actors have started harvesting information server side by modifying core PHP files. In this case, the infection would be undetectable from the outside, but it's still going to be pretty easy to find because you're rarely modifying any of those core files, so any of those changes that are going to come up are going to be suspicious. To get around both of these drawbacks, we're seeing bad actors combine the two. So client side snippets of JavaScript are sending stolen credit card data to server side scripts that they've installed on the same server as the site. Now, this allows bad actors to cover their tracks a little bit because the traffic that's being redirected is going to the same server, and that's less likely to be flagged as suspicious. It's a bit more complicated to pull this off, but our team has been seeing this hybrid approach in the wild, so it's something to be on the lookout for. Now, another month has passed, and we found more cross site scripting attacks targeting WordPress plugins. Most notably, we discovered one that affects users of the YITH WooCommerce Ajax Product Filter plugin. Now, this is a plugin that allows WooCommerce stores to be filtered by product type, and it's pretty popular. It's got about 100,000 users right now, so with it being vulnerable, it's very important that all of them update to the latest version, which is 3.11.1. Some of the other plugins we found cross site scripting vulnerabilities with included Elementor Page Builder, Careerfy, JobSearch, and Newspaper. If you're looking for a full list of vulnerabilities that have been patched this month, John Castro at the Sucuri Labs blog has you covered. Check out our show notes for the link. Also, this month I had a blog go up detailing what's called a jibberish hack. It's basically the same motivation as an SEO spam attack where bad actors use your site's good standing to redirect visitors to their own sites. But in this attack, you'll find a bunch of randomly named folders filled with a ton of HTML files with really nonsensical file names like cheap-cool-hairstyles-photos.html. It's just going to be a mishmash of keywords that clearly you didn't put there. Unfortunately, just deleting all those HTML files and folders is not going to be enough to get rid of that jibberish hack though. You're going to need to fully clean any hacked files and database tables, and then you're going to have to deal with all the damage caused to your site's standing. And just keep in mind, if you find anything about that process too daunting, we're always here to help. Now, for this month's Sit Down, we have Sucuri analyst Krasimir Konov. Earlier in June, he had written a lab's note about a malicious downloader script that used the curl function, and we chatted a bit about it, but more importantly, we went really in-depth on all the different varieties of malware that website owners need to be aware of. But, before I get started with Krasimir, I just wanted to remind you about the Sucuri Sync-Up, our sister podcast. It's a weekly website security news briefing that you can find anywhere you get your podcasts, as well as the video version on our social media feed, and now you can even get it on your Amazon Alexa smart speakers. Just search Amazon skills for Sucuri Sync-Up, add the flash briefing, and get new content delivered every Monday. Now, on with the show. Hi Krasimir, thanks for joining us on the show. I thought we could start off and maybe have you tell us a little bit about yourself and what you do here at Sucuri? Krasimir Konov: Yeah, sure. Well, I joined Sucuri originally in 2014, but I've been in the IT business for about 10 years. Nine of those I did security. And currently at Sucuri I'm one of the malware analysts. I used to work in the front lines, used to clean websites and whatnot, and then I gradually moved up, and now I'm working in the malware research department. And my day to day job is basically analyzing malware, and then once I analyze it and figure out what it is, then I will create a signature for it. And we'll add those signatures to our tools, so we can automate some of the work we do. And I also write some Labs Notes blog posts. Usually, if I find something interesting in malware or some security topic, I'll write about it. Justin Channell: Yeah. And of those topics recently that you wrote about, one was about a malicious curl downloader, and how exactly did that work? Krasimir Konov: Right, yeah. That was an interesting one, but not very unique or anything like that. We see that a lot with curl being used as a downloader. It's a very common malware. So rather than including the actual malware in the file, the attackers would use curl to download the malicious code. In this case, they'll download it from Pastebin, but it could be anything. It could be another website or anything like that, and curl would just make a call to the website, request the code. The website will respond with the code, and then later on, there is some code to either save the output somewhere on the website, or you'll just run it through eval and execute the actual code right away. Justin Channell: Right. And you said that it's commonly found in malware, but let's kind of maybe talk a bit broader about malware in general. What is everything that is classified as malware? Krasimir Konov: Well, in general it will be anything that the owner of the website didn't authorize, anything that was added by a third party. There is a lot of different malware. It could be even something like a defacement that will also be considered malware because it was something the user did not authorize. Even though it might not be doing anything malicious on the website, it's not infecting users, the visit is still something they did not authorize. So defacement would also be considered malware. And even something like ransomware where the website is technically not really damaged, it's all encrypted, but it's not infecting anybody. It's not doing anything malicious, but it's still encrypting the entire website and asking the user or the customer, the owner of the website for a ransom they need to pay in order to get the website back online. Justin Channell: Okay. Let's maybe break it down to each individual type of malware. For example, what would be a way that maybe I-frames could be maliciously used by a hacker? Krasimir Konov: Yeah. An I-frame can be used maliciously when it loads content from another location. You can look at the I-frame as a window that just opens another website. So anything that website has on it, you're pretty much loading it through the I-frame. So if that website is infected and it's serving some kind of malware, by opening an I-frame, you're loading all those elements, everything that was on this website. And sometimes the I-frame can be as small as pixel or something hidden somewhere off the screen, so you wouldn't even know that it was opening it. Justin Channell: And yeah, I feel like we've also seen a lot of them where they're used almost to mimic popups as well. Krasimir Konov: Yeah. I mean the I-frame, it could just load from another website and the other website could do anything. It could be serving just malware and it would try to infect the user that doesn't even know that they're being connected to the other website. It could just have some other JavaScript that's just trying to open up pop ups on the original website through the I-frame. Yeah, it could be a lot of things. Justin Channell: Okay. And also, let's talk a little bit about conditional redirects and how those work. What allows a script to detect which devices are coming in and where they're coming from? Krasimir Konov: Right. Yeah. That's a common one we see a lot. Basically, a conditional redirect would be something, it's a redirect on the website. It's obviously malicious, but there's certain conditions that need to be met before the redirect is actually executed or the redirect happens. For example, let's say if it's on a phishing website or a phishing page that is hidden somewhere on the website. For example, if Google visits it, obviously the attacker doesn't want Google to see the actual phishing page and record it as a phishing page. So they'll look for, for example, the IP address. They would look for the user agent. And a lot of times they can tell that it's a bot. So they'll just return a 404 response, for example, that will be like, "Oh, page not found." So Google would be like, "Oh, it looks like this page doesn't exist." But then if a regular user goes to the same page, then those conditions will be met. The actual website or the script behind the phishing will check and see, and be like, "Oh, this one is running Firefox or Chrome," and be like, okay. And then they'll look at the IP and be like, "Oh, he's in whatever, he's in United States somewhere." And he's like, "Oh, okay. That's good." And then once all of these conditions are met, then the actual script will serve them the actual phishing page. And it'll be like, "Oh, you need to fill out this to recover your account or whatever, or type in your credentials to log in here." Justin Channell: And so this is the type of thing we're really, a website owner is going to run into this more commonly when people are complaining about they're getting served bad content or whatever, and they can't seem to replicate it. It's likely probably these kind of redirects. Is that right? Krasimir Konov: Right, right. It could be something as specific as, for example, a range of IP addresses that correspond to an ISP or maybe let's say a country. It could be like, "Oh, were targeting only customers in the US," so if you're connecting from another country and you go to the same website or the same page, it would just say 404. It will give you a page not found. But then if you actually have an IP address from the United States, you're connecting from the United States, then it will actually show you the phishing page. Justin Channell: Now another type of malware I feel like we see a lot here is SEO spam. We hear people talking about that. What are some of the top SEO spam keywords that you see coming through? Krasimir Konov: Yeah. We get that a lot. We see a lot of spam on websites. A lot of times attackers will use SEO spam to gain ranking for their own website. Or they'll just try to include some kind of SEO spam in links to another website that they're currently running or something. I mean, these things change all the time. So a website might be up for a week and then it'll disappear, and then they'll start another campaign. But yeah, we see that a lot. We see all kinds of keywords they use. Most common ones will be something like Viagra. We'll have like jerseys for sale. A lot of times, they'll use name brands like Nike, Rolex, Prada. We've seen even some essay writing services for some reason. I'm not sure why, but that's common. We see, for example, pharmaceuticals a lot that will use specific medicine names. They'll use all kinds of replicas, like a replica bag of this, replica this, replica that. We'd see prescription, also payday loans. And obviously there's some adult related sites and things like that keywords. Justin Channell: So pretty much anything that people are going to be searching and clicking on are probably going to be targets for SEO spam? Krasimir Konov: Right. I think a lot of it commonly is pharma related because a lot of people are looking to buy medicine online, and a lot of times will require a prescription. So a lot of people are like, "Oh, let me see if I can find this medicine that I can buy it online somewhere." They don't need a prescription. They don't want to pay to visit a doctor and whatnot, and they'll look for it. And yeah. Justin Channell: Now, whenever somebody's website does get hacked with a SEO spam attack, what kind of effect can it have on the website beyond just being defaced? Krasimir Konov: Yeah. You can have a lot of things can happen, negative things. For example, the website can be blacklisted because of the keywords. And that usually represents a big red warning when you go on the website, depending on who blacklisted it. But if it's Google, for example, you'll see a big warning and it'll tell you this website contains malware or there's something wrong with this website. So, pretty much all the traffic on the website will be gone. And then you can also lose a lot of your reputation if there is a SEO spam on the website. For example, if you were ranked in say number five for certain keywords that represent your product on Google search engines, and then suddenly you get hit with SEO spam, then all these search engines then go and visit the website. And all of a sudden they're like, "Oh, there's all these weird key words on here, all this SEO spam that's causing a lot of mixed signals." And the search engines are like, "Oh, where do we rank this website now? Do we rank them with this product that's originally what the website is about? Or do we take into consideration all these other keywords that are mixed up that are SEO spam?" So, all of a sudden your website might go from being ranked number five on the first page to being on the 10th page. And then you rank for all these other keywords that you didn't intend to. And then people search for something completely different. They're searching for jerseys or something, or now they're searching for Prada products, and then suddenly your website pops up in there. So you're not really getting any good traffic, not targeted traffic. But, yeah. Justin Channell: Okay. So in a lot of ways, the effects of SEO spam would kind of be the same for defacements or any kind of malware with the blacklisting, but it does bring that kind of unique part to it where then it can also then bring traffic that you weren't expecting from somebody searching for jerseys, for example. I had not really ever thought about that. Krasimir Konov: Right, right. Yeah. It will definitely bring some traffic. I've seen a lot of times where websites will be connected. Let's say, there was 1,000 websites that were all infected with SEO spam, and it will kind of link each other to try to bring each other up into the rankings. And so you would see a lot of strange traffic from some random websites that were, for example, that were previously infected, even if they might not be anymore. But yeah, they'll be sending traffic to you or there'll be usually search engines sending you traffic, but for the wrong keywords. People are looking for something else, so obviously they're not going to be interested in your website. They're not going to buy anything because they're not looking for that. Justin Channell: And now, so thinking of the way websites get infected, a very common way it seems to be is through phishing campaigns. What are some recommendations you have for the best ways to avoid becoming a phishing victim? Krasimir Konov: Yeah. There is some ways. I mean, it depends really on the type of attack. Obviously, a lot of people, when they think of phishing, they think, "Oh, it's just like a PayPal phishing page and it just looks like the original," but it could be more subtle. If it's just a regular page where you're just going and you get redirected to another website, obviously the first thing to look is if you have the security padlocks, make sure that traffic is encrypted. A lot of these websites don't really have any encryption nowadays. More are starting to get that with pre SSLs being issued and whatnot. But that's the first thing to look and see, make sure. Anywhere you're typing your sensitive information, you want to make sure you have the padlock to make sure everything is encrypted. Krasimir Konov: But also you want to look at the URL of the actual website you're visiting. A lot of times they'll try to hide it. So you might have to be careful and look closely. Something that might be an I will be an L or something like that. And a capital I and L might look kind of similar into your IRL, so you might miss something like that. Say, if you're looking for PayPal and it might replace the L with an I, and if you don't look closely, it might look exactly the same. And you're like, "Oh, okay, it's paypal.com," but not really. So yeah. Just pay attention to the URL, make sure it is the actual website. There's no paypal.com dot something, dot something else, dot com. Yeah. You want it to just say paypal.com, and then it'll have forward slash and something else. But yeah, it gets more complicated when you have, for example, a phishing page that's injected into a regular page. For example, you have a checkout page on a website that you're buying things from and you go through the checkout page and you're looking at where you type in your credit card information and whatnot. And you might have a phishing page that actually looks exactly like a little box that gives you where you put in your credit card number, or your name, your address, and all that. So that will be more subtle. For example, that could be also an I-frame that's just coming from another page. And it will look exactly like it's part of the website. You're on the legitimate website, but only that portion of the website is actually the phishing page. And you look at it and you're like, "Oh, okay. It looks fine. I'm just putting my credentials." So that one could be a lot harder to figure it out. Usually, if it's something like that, I look for something that looks kind of out of place. Maybe they didn't get the right font. It might not be the same as the original website or there might be something out of place, some fields that are missing or some fields that are squished into the left or the right. It looks kind of awkward. It's like, why would this be like this? The whole website looks professional. There's a pink background or something, for example, and then suddenly there's this white box in the middle. It's like, ah, it looks kind of weird, out of place. Justin Channell: So pretty much if anything looks slightly out of place, you really should double check everything at that point. Krasimir Konov: Right. Right. Yeah. Obviously there's more ways that you can check, but I wouldn't get into more technical, like inspecting elements and looking at stuff, but yeah. Justin Channell: And now another type of malware that's kind of, and it kind of plays in with whatever the other infection is, is backdoors. Can you give us some examples of what backdoors can be? It's mainly just when a hacker can get back into the site to reinfect it, but I know there are a ton of different methods. And what are some of the more common ones and then maybe some that really interesting that you've seen? Krasimir Konov: Yeah, there is a lot. They'll probably be one of the first things the hacker would do is if they compromise a website, obviously they'll try to spread backdoors and just inject code everywhere so they can get back in, even if the owner of the website or webmaster cleans it. They want to try and hide some malicious code somewhere so they can always get back in. There's many variations. A backdoor could be something as simple as a single line of code to just [inaudible 00:20:19] argument, some kind of string or something via get or post. Krasimir Konov: And then it runs into an eval, so it evaluates the code and executes it. And some backdoors are very complex and they can be included in, let's say you have a WordPress site and you have a specific login page where all the login credentials are being processed and everything else. They could even inject code into that to basically bypass the whole login mechanism so that they can just bypass everything. They don't even have to know any user. They don't have to know the password, nothing. They'll just include some lines in there, and every time they'll be just able to log in. Yeah. It gets pretty crazy. Yeah. I mean, there's all kinds of malware. There is always a malware, for example, that just targets credit cards and will just target the eCommerce websites. And they'll just try to steal the login credentials, I mean, the credit cards. They'll try to get your address, your credit card information, any kind of CVV code or whatever you typed into the billing address, everything. And then there's also malware like the backdoors that are just trying to keep the attacker in control and trying to get them back into the website. There's just so many variations of what a malicious user might want to do on a website. Some can be something as simple as just reinfecting the website. They don't want to keep control. They just want to keep reinfecting it with some kind of malware. So even if you clean it, it would just get reinfected. Some of them in the database, otherwise might be in the files. We've seen some added into a [inaudible 00:22:14] job that just keeps running on the server. There could be malware that is just a giant to, for example, attack out of websites. Like for example, a distributed denial service where they put the same malware on thousands of websites. And then they try to send traffic to one website to try to bring it down. Yeah. People try to do all kinds of stuff with websites. We've seen even some cryptocurrency mining malware that you go onto a website and suddenly your PC starts running like crazy. And you're like, what the hell is going on? Your fans turn on and the PC is 100% CPU. And it turns out that the website has some malware that's just by mining Bitcoins with your CPU and it's using all of it. Justin Channell: Wow. Okay. So one question now, the last question I have is of all the malware that you've seen, what do you think is the coolest piece of malware that you've ever seen? Krasimir Konov: I think the coolest would be the ones that are so subtle that you don't even know that it's there. For example, we've seen some that were pretty innovative. It will be just a one liner code that's just one line. And for example, it will be let's say 40-50 characters, something like that. And that's all it is. And they'll hide it somewhere in between the legitimate code. And if you don't know what you're looking for, you would never see it. It doesn't look suspicious. There is no links to some other website. There's no some kind of encrypted code or anything like that. It's just a simple one line. And then if you're just scrolling through the file looking for something, you would never see it. It just looks like all the other code. And then if you look closely, you're like, "Oh, there's this..." Look closely, and you're like, "Oh wow, this is not supposed to be there." And then you keep looking at it and you're like, "This looks really weird." And then you see that it's actually doing some malicious things and trying to evaluate some code or taking output from the outside, I mean, some input from outside, you can call it and give it code to run. Justin Channell: Well, Krasimir, thanks for coming on and talking to us for today. Krasimir Konov: Yeah. Thank you. Thank you. I'm so happy. I'm glad I was able to do this podcast and I can't wait to do another one. Justin Channell: Yeah, we'll have you on again. Thanks. Krasimir Konov: Thank you. Justin Channell: Thanks again to Krasimir for joining us here on the Sit Down. We'll be back with another episode next month. So be sure to subscribe on Apple podcasts, Spotify, Stitcher, or any podcasting platform. Also, be sure to follow us on social media at Sucuri Security and check us out at sucuri.net. That's S-U-C-U-R-I.net. I'm Justin Channell, And this has been the Sucuri Sit Down. Stay safe out there.](https://blog.sucuri.net/wp-content/uploads/2020/05/20-sucuri-podcast-blog-post_blog_image-390x183.jpg)
